Jump to content Jump to search

HOME  |  NEWS | MibiNet  | TEAM  |  PROJECTS  |  PUBLICATIONS  |  OPEN POSITIONS  |  MibiNeⓍt


In vitro evolution of a synthetic organelle inside a picolitre habitat (A07)

The chloroplasts of plants and algae evolved through endosymbiotic incorporation of a cyanobacterium. Few of hypotheses as to the molecular mechanisms underpinning endosymbiosis have been subject to direct experimental testing. We propose here the experimental recapitulation of the origin of plastids through endosymbiosis. A central aim is testing the hypothesis that the objective of the endosymbiont is maximising metabolic cooperativity under spatial constraints. We will test this hypothesis by genetic engineering of cyanobacteria and establishment of a synthetic cytosol-like environment in microfluidics devices.

Synthetic Metabolism



Dr. Marion Eisenhut
Principal Investigator +49 521 106-8701
Send Email
Computational Biology
Universität Bielefeld
Universitätsstraße 25
Building: UHG G2
Floor/room: 130

Dr. Dietrich Kohlheyer
Principal Investigator +49 2461 61-2875
Send Email
Institute of Microscale Bioengineering
(IBG-1)
Forschungszentrum Jülich GmbH
Wilhelm-Johnen-Straße
Building: 15.7
Floor/room: 201

Prof. Dr. Andreas Weber
Head of Institute +49 211 81-12347
Send Email
Plant Biochemistry
Heinrich Heine University
Düsseldorf
Universitätsstraße 1
Building: 26.14
Floor/room: 02.104